

New Neuromodulation Treatments for Mood Disorders

Michael E. Henry, MD Director, Somatic Therapy Medical Director, Bipolar Clinic and Research Program Massachusetts General Hospital

Joan A. Camprodon, MD MPH PhD

Chief, Division of Neuropsychiatry Director, TMS clinical service Massachusetts General Hospital Harvard Medical School

Disclosures: Dr. Camprodon

My spouse/partner and I have the following relevant financial relationship with a commercial interest to disclose:

- Funding: NIMH, NIDA, NIAAA, NIA, NIH Brain Initiative, Harvard Players Health Study, Harvard Brain Initiative, Gerstner Foundation, AE Foundation, Solinsky Foundation.
- Scientific Advisory Board: Feelmore Labs, Hyka Therapeutics
- Consultant: Neuronetics

Disclosures: Dr. Henry

My spouse/partner and I have the following relevant financial relationship with a commercial interest to disclose:

Spouse Salary: Roche Pharmaceuticals

Lifetime Disclosures: Dr. Henry

- Eli Lilly: Honoraria, Travel, Research Grants
- Jansen Pharmaceuticals: Honoraria, Travel, Research Grants
- Glaxo Smith Kline: Honoraria, Travel, Research Grants
- Forest: Research Grants
- Bristol Myers Squibb: Honoraria
- Sunovian (Sepracor): Honoraria, Research Grants
- Pfizer (Wyeth Ayerst): Honoraria, Research Grants
- Bracco Diagnostics: Research Grants
- Biomedical Research Models: Stock ownership
- General Electric: Stock Ownership
- Abbott Labs: Former employee
- Roche Pharmaceuticals: wife is an employee

Brain Stimulation – Neuromodulation

Invasive

Deep Brain Stimulation (DBS) Vagal Nerve Stimulation (VNS) Epidural Stimulation (ES)

<u>Convulsive</u> Electroconvulsive Therapy (ECT) Magnetic Seizure Therapy (MST)

Noninvasive

Transcranial Magnetic Stimulation (TMS) Transcranial Direct Current Stimulation (tDCS) Transcranial Photobiomodulation (tPBM)

(Therapeutic) Neuromodulation and the FDA

DEVICE	CONDITION	FDA STATUS
Deep Brain Stimulation	Chronic Pain	First indication, now revoked
	Parkinson's Disease	General Approval
	Essential Tremor	General Approval
	Dystonia	Humanitarian Device Exception
	Obsessive Compulsive Disorder	Humanitarian Device Exception
	Major Depressive Disorder	Experimental
Vagus Nerve Stimulation	Epilepsy	General Approval
	Major Depressive Disorder	General Approval
Transcranial Magnetic Stimulation	Major Depressive Disorder	General Approval
	Migraines: acute management	General Approval
	Obsessive Compulsive Disorder	General Approval
	Smoking Cessation	General Approval
Transcranial Current Stimulation	MDD, ADHD, Alzheimer, Epilepsy	Experimental

Transcranial Magnetic Stimulation

Anthony Barker 1984

1831 Faraday's Electromagnetic Induction

Transcranial Magnetic Stimulation

1831 Faraday's Electromagnetic Induction

Anthony Barker 1984

Effectiveness Naturalistic Studies in MDD

CGI-S Outcomes

LOCF Analysis of intent-to-treat population

Please see text for definitions of response, remission and treatment resistance level

PHQ-9 Outcomes

LOCF Analysis of intent-to-treat population Please see text for definitions of response, remission and treatment resistance level

Carpenter et al. 2012

- 339 patient with MDD naïve to TMS
- Concurrent medications/therapy
- Response Rate: 41.5-58%
- Remission Rate: 26.5-37.1%
- Age and severity predict outcome
- Treatment-resistant not a predictor

IDS-SR Outcomes

LOCF Analysis of intent-to-treat population

Please see text for definitions of response, remission and treatment resistance level

Why Consider TMS treatment for Depression?

STAR*D Study: Depression Treatment Outcomes

Rush AJ et al. Am J Psych 163:1905-1917, 2006

Anatomy of Therapeutic Targets

Localization: Neuronavigation

Individualized fcMRI-guided TMS

Clinical Response

20 patients, open-label)

*p<.05 from baseline

Failed medications in current episode: 7.06 (range 5-12)

*

36

In perspective...

Rush AJ et al. Am J Psych 163:1905-1917, 2006

Theta Burst Stimulation (TBS)

FDA-cleared: TBS for MDD

Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial

Response Rate: 39%-49% Remission Rate: 20%-32%

FDA cleared in 2018

Figure 3: Change in HRSD-17 scores over time, comparing the 10 Hz rTMS and iTBS treatment groups Data are mean scores with lower and upper 90% Cls.

Accelerated TBS Protocol

Day 1	Day 2	Day 3	Day 4	Day 5
iTBS 1800				
50 minute ISI				
iTBS 1800	iTBS 1800	iTBS 1800	iTBS 1800	iTBS 1800
50 minute ISI				
iTBS 1800	iTBS 1800	iTBS 1800	iTBS 1800	iTBS 1800
50 minute ISI				

Accelerated TBS for MDD

Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression (SAINT-TRD)

Protocol

- iTBS (excitatory) to left DLPFC
- Pulse intensity: 90% vs 120% RMT
- 1800 pulses/session (**3x** 600 pulses)
- **10** sessions per day (50min pause)
 - = 6 weeks of daily TBS
- 5 consecutive days (inpatient)
 - = 5 courses of TBS

22 patients (DBS candidates)

- 1 did not complete
- 19 remitters after 5 days (86.36% ITT)

TMS for Bipolar Depression

- FDA In 2020, the FDA granted breakthrough device designation to TMS for treating bipolar depression
- Traditional <u>10Hz protocols to the left DLPFC</u> seem effective, but unclear TBS is.
 - What is the right anatomical target for BD?
 - What is the right frequency of stimulation?

Transcranial Electrical Stimulation

transcranial <u>Direct Current</u> Stimulation (tDCS)

transcranial Alternating Current Stimulation

transcranial Random Noise Stimulation

tDCS for MDD

BJPsych	The British Journal of Psychiatry (2012) 200, 52–59. doi: 10.1192/bjp.bp.111.097634
---------	--

Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial[†]

Colleen K. Loo, Angelo Alonzo, Donel Martin, Philip B. Mitchell, Veronica Galvez and Perminder Sachdev

Contents lists available at SciVerse ScienceDirect

Journal of Affective Disorders

journal homepage: www.elsevier.com/locate/jad

Brief report

Continuation transcranial direct current stimulation for the prevention of relapse in major depression

Donel M. Martin^a, Angelo Alonzo^a, Kerrie-Anne Ho^a, Michael Player^a, Philip B. Mitchell^a, Perminder Sachdev^{a,b}, Colleen K. Loo^{a,c,*}

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

The Sertraline vs Electrical Current Therapy for Treating Depression Clinical Study

Results From a Factorial, Randomized, Controlled Trial

Andre R. Brunoni, MD, PhD; Leandro Valiengo, MD; Alessandra Baccaro, BA; Tamires A. Zanão, BS; Janaina F. de Oliveira, BS; Alessandra Goulart, MD, PhD; Paulo S. Boggio, PhD; Paulo A. Lotufo, MD, PhD; Isabela M. Benseñor, MD, PhD; Felipe Fregni, MD, PhD

ORIGINAL ARTICLE

Trial of Electrical Direct-Current Therapy versus Escitalopram for Depression

A.R. Brunoni, A.H. Moffa, B. Sampaio-Junior, L. Borrione, M.L. Moreno,
 R.A. Fernandes, B.P. Veronezi, B.S. Nogueira, L.V.M. Aparicio, L.B. Razza,
 R. Chamorro, L.C. Tort, R. Fraguas, P.A. Lotufo, W.F. Gattaz, F. Fregni,
 and I.M. Benseñor, for the ELECT-TDCS Investigators*

tDCS for MDD

ORIGINAL ARTICLE

The Sertraline vs Electrical Current Therapy for Treating Depression Clinical Study

Results From a Factorial, Randomized, Controlled Trial

Andre R. Brunoni, MD, PhD; Leandro Valiengo, MD; Alessandra Baccaro, BA; Tamires A. Zanão, BS; Janaina F. de Oliveira, BS; Alessandra Goulart, MD, PhD; Paulo S. Boggio, PhD; Paulo A. Lotufo, MD, PhD; Isabela M. Benseñor, MD, PhD; Felipe Fregni, MD, PhD

Table 2. Response and Remission Rates According to Montgomery-Asberg Depression Rating Scale Scores^a

			No	. (%)		
	We	ek 2	We	ek 4	We	ek 6
Group	Response	Remission	Response	Remission	Response	Remission
Sham tDCS and placebo	11 (36.7)	6 (20.0)	9 (30.0)	3 (10.0)	5 (16.7)	4 (13.3)
Sham tDCS and sertraline	10 (33.3)	5 (16.7)	8 (26.7)	4 (13.3)	10 (33.3)	9 (30.0)
Active tDCS and placebo	9 (30.0)	4 (13.3)	12 (40.0)	7 (23.3)	13 (43.3)	12 (40.0)
Active tDCS and sertraline	16 (53.3)	6 (20.0)	16 (53.3)	7 (23.3)	19 (63.3)	14 (46.7)
P value	.25	.89	.14	.40	<.001	.03

Home-based tDCS for MDD

- CE approved
- FDA granted IDE: pivotal trial launching

Standard vs Optimized Montage

Traditional Bipolar Montage: L+ - R- Individualized multielectrode High Definition tDCS

www.mghcme.org

Beyond Mood in MDD: Cognition

Established pro-cognitive effects of tDCS

Archival Report

Biological Psychiatry:

Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex Improves **Cognitive Control in Patients With Attention-**Deficit/Hyperactivity Disorder: A Randomized Behavioral and Neurophysiological Study

Laura Dubreuil-Vall, Federico Gomez-Bernal, Ana C. Villegas, Patricia Cirillo, Craig Surman, Giulio Ruffini, Alik S. Widge, and Joan A. Camprodon

Also for patients with MDD

Janaina F. Oliveira^{a,b}, Tamires A. Zanão^{a,b}, Leandro Valiengo^{a,b}, Paulo A. Lotufo^a, Isabela M. Benseñor^a, Felipe Fregni^c, André R. Brunoni^{a, b, a}

ARCHIVAL REPORT

Amelioration of Cognitive Control in Depression by Transcranial Direct Current Stimulation

Larissa Wolkenstein and Christian Plewnia

	Contents lists available at ScienceDirect	AFFE
	Journal of Affective Disorders	C.
ELSEVIER	journal homepage: www.elsevier.com/locate/jad	<u>بر</u>

depressive disorder. Results from the placebo-controlled ELECT-TDCS trial

Marina L. Moreno^{a,b,1}, Stephan A. Goerigk^{c,d,e,1}, Laiss Bertola^a, Claudia K. Suemoto^a, Lais B. Razza^b, Adriano H. Moffa^{b,f}, Beatriz P. Veronezi^a, Luara Tort^{a,b}, Barbara S. Nogueira^a, Wagner F. Gattaz^b, Renerio Fraguas^b, Frank Padberg^c, Paulo A. Lotufo^a, Isabela M. Benseñor^a, Andre R. Brunoni^{a,b,*}

ECT Utilization in U.S. 2014

- General Population
 - 2014 Marketscan database (N=47,258,528)
 - 5.56 ECT patients per 100,000.
 - 0.25% of patients with a mood disorder.
 - Co-morbid psychiatric disorder (RR = 5.70)
 - Multiple Psychotropic Medications (d = 0.77)
 - Substance use disorder (RR = 1.97)

Wilkinson ST et al., Psychiatr Serv 2018 69:542-8

QUESTIONS

- 1. What is current clinical use of ECT?
 - A. MDD
 - B. Catatonia
 - C. Psychosis
 - D. Adolescents
 - E. COVID
- 2. What is the "Best Way" to do ECT?
 - A. Brief vs Ultra-Brief Pulse B. FEAST
- 3. What do you do after ECT?
 - A. Medication Management
 - B. Maintenance ECT

Clinical Indications for ECT

Disease Responsive to ECT	Clinical Circumstances	
Major Depression	Need for rapid, definitive clinical response (severity, safety)	
Mania	Treatment Resistance Intolerance to medications/therapy	
Catatonia/Trisomy 21 Disintegrative Disorder	History of positive response to ECT	
Psychosis: Schizophrenia/schizoaffective disorder	Patient's Preference	
Parkinson's Disease (on-off) NMS Intractable Seizures	Weiner, R, 2001	
	Rudorfer et al.19	

www.mghcme.org

Clinical Predictors of Response to ECT

	Depression	Mania	Psychosis	Catatonia
Positive	Psychomotorretardation-psychotic symptoms-Age	-Severe mania (+/- psychosis) -Mixed states	- Good prognosis signs	
Negative	 Antidepressant Medication failure Chronicity of episode 	-Irritability		

Rudorfer MV et al., 1997 Pinna M et al., 2016

COVID

- Limited Availability
 - -- Resources diverted to COVID pts and other procedures.
 - -- Dosing paradigm more definitive.
 - -- PPE for providers
- Bag mask ventilation increases droplets
 -- Ventilation changes

BEST WAY TO DO ECT?

- Efficacy without side effects
- Electrode Placement
- Stimulus
- Dose
- Anesthesia

Electrode Placement

Figure 1. Changes in regional cerebral blood flow (rCBF) in depressed patients acutely after a single ECT treatment, as a function of electrode placement. CBF values at 32 brain regions were expressed as ratios of values 50 min after a treatment relative to 30 min before the treatment (post/pre × 100). Values of 100 indicate no change. The ratio scores were color coded so that purple and blue colors correspond to postictal CBF reductions, whereas orange and red colors correspond to postictal CBF increases. The brain shapes are displayed in a 185 × 112 matrix. Pixels were interpolated from all 16 detectors in each hemisphere, with each detector value multiplied by an inverse-square factor equal to $2^{18}/r^2$, and r being the distance in pixels to the center of each detector. All pixels within a radius of 5 from the center of each detector were set to the value of that detector. Changes in the left and right hemispheres are presented separately for patients treated with right unilateral ECT (n = 28) or bilateral ECT (n = 26). Relative positions of the rCBF detectors are labeled on the representation of the left hemisphere of patients treated with right unilateral ECT [Nobler et al., 1994].

Nobler MS et al., Depression and Anxiety 2000; 12:144-156

www.mghcme.org

Absolute CMRglu Pre-Post ECT

(Henry, Schmidt, Matochik, Stoddard, & Potter, 2001)

Evolution of ECT Technique

- 1938 Sine Wave
- 1976 Brief Pulse
- 1963, 2008 Ultra-Brief Pulse
- 2003 MST
- 2009 FEAST

AVERSE EFFECTS: Memory

Acute Treatment

www.mghcme.org

Ultra-Brief v Brief Pulse ECT

- Brief Pulse showed decreases in autobiographical, verbal and non-verbal memory, and processing speed.
- Ultra-brief less decline in autobiographical and anterograde memory. (Verwijk et al., 2012)
- Systematic Review of Efficacy. (Tor et al., 2015)
 - BP better than UBP (8.7 v 9.6)
 - BP more remissions than UBP (OR 0.71)

Seizure Threshold Dose

<u>Unilateral</u>

- 50%: 35% response rate
- 150%: 30% response rate
- 500%: 65% response rate

<u>Bilateral</u>

• 150%: 65% response rate

Responder = > 60% reduction HRSD

(Sackeim et al., 2000)

Antidepressant Response

- 2003 UK ECT Review Group
- Real vs Sham ECT on Depression:
 - 6 trials, 256 patients, 2 sine wave
 - Mean difference HDRS 9.7 (95% CI 5.7-13.5)
- Bilateral vs Unilateral ECT:
 - 22 trials, 1408 patients, Duration, Placement, Number varied
 - Mean difference HDRS 3.6 (95% CI 2.2- 5.2) Bilateral
- ECT vs Pharmacotherapy:
 - 18 trials, 1144 patients, Duration, Placement, Number varied
 - Mean difference HDRS 5.2 (95% CI 1.4 8.9)
 - TCA's, MAOI's, Tryptophan, SSRI's, Li
 - Variable definitions of treatment refractoriness (4 trials).

(UK ECT Review Group, 2003)

Medication Management

- Drugs that raise seizure threshold.
 - 1. Benzodiazepines
 - 2. Antiepileptic Agents
- Drugs that lower seizure threshold.
 - 1. Aminophylline/caffeine
 - 2. Buproprion
- Lithium.

Anesthesia Options

- Pentathol
- Methohexital
- Etomidate
- Propofol
- Delayed Stimulation
- Divided Dosing Strategy

KETAMINE AUGMENTATION

- 1995-2016: 24 published articles using ketamine anesthesia/augmentation of ECT in the literature.
- Improvement early but not sustained.
- Overall clinical efficacy not different.
- Significant Limitations in study design.

AFTER THE ACUTE COURSE OF ECT

- No Treatment
- Maintenance ECT
- Maintenance Medications/Psychotherapy

Maintenance ECT

Rationale: Acute ECT has high relapse rate. Treatment resistance. 61% PT vs 32% ECT +PT relapsed 1 yr. **Efficacy**: Nordenskjold et al J ECT 2013; 29:86-92 • Schedule: 1x/week – 4 weeks 1x/2 weeks 1x/3 weeks 1x/4 weeks -6-12 months.

LITHIUM PLUS NT vs VEN POST ECT

www.mghcme.org

CONCLUSIONS

- ECT continues to be the "gold-standard" for treatment resistant depression.
- MOA likely reflects both global and localized effects
- Major Effect is a reduction in metabolic activity: ? GABA.

